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I. INTRODUCTION

Inspired by the achievement in the study of hadron spectroscopy within the framework of quark potential model [1-
3], there have been continuous efforts to apply the quark potential model and the resonating group method (RGM) [4]
to study nucleon-nucleon, nucleon-meson and meson-meson interactions and scattering [5-20]. Among these efforts,
the study of kaon-nucleon (KN) interaction arose a particular interest in the past. Due to the high penetrating
power of K+ meson, it is expected that the study of K+N interaction would provide more information for nuclear
structures and properties. Since in the K+N interaction, the one-pion exchange is forbidden, the two-pion exchange is
suppressed [10,11] and there is no annihilation of valence quarks to appear, it is expected that the t-channel one-gluon
exchange potential (OGEP) plus the harmonic oscillator confinement potential would give a reasonable description
of the K+N interaction. With this idea, the authors in Ref.[10] calculated the S-wave phase shifts of K+N elastic
scattering and found that the theoretical results are in quite good agreement with the experimental data in the low-
energy domain. It is noted that in the calculation, the authors only took the coulomb, spin-spin and Darwin terms
in the t-channel OGEP without considering the spin-orbital coupling and tensor force terms which contribute to the
higher partial wave scattering. Subsequently, to investigate P-wave phase shifts, the authors in Ref.[11] introduced
into their model the spin-orbital coupling terms originating from the t-channel one gluon exchange and a scalar
exchange term describing the confinement interaction. As one knows, there are two kinds of spin-orbit coupling terms
in the t-channel OGEP: the spin-symmetric term and the spin-antisymmetric one. Correspondingly, there also exist
such two terms in the confining potential generated from the scalar exchange. The spin-symmetric terms in the
two potentials have opposite signs. Therefore, the effect of the spin-orbital coupling is suppressed just as required
in the study of meson and baryon spectra [2,21]. However, the spin-antisymmetric terms are of the same sign and
hence would produce large splitting which is in contradiction with the experiment [11]. Such terms are therefore
dropped out in Ref.[11]. The calculation in Ref.[11] showed that if the spin-orbit coupling terms are considered only,
except for the I = 0, J = 1

2 channel phase shift, the sign and magnitude of the other channel phase shifts are well
reproduced; when the other terms in the t-channel OGEP are taken into account together, there appears a serious
problem that the I = 1 channel phase shifts all become negative, conflicting with the experimental data. Later, the
S-wave phase shifts of KN scattering are restudied in Ref.[15] by employing the Born order diagrammatic technique.
In the study, although only the spin-spin coupling term in the t-channel OGEP is considered, the calculated result
looks fine. Subsequently, the Born approximation was applied to investigate the KN scattering more extensively in
Ref.[17]. In the investigation, apart from the hyperfine term in the OGEP and the linear scalar confinement, the
spin-orbital coupling and spin-independent terms in the OGEP are taken into account in the evaluation of P-wave
and D-wave phase shifts. Nevertheless, the magnitudes of most of the calculated phase shifts are smaller than the
experimental ones. Particularly, the sign of the theoretical P13 wave phase shift is opposite to the experimental data.
Recently, the KN phase shifts are recalculated in Ref.[18] within the constituent quark model by numerically solving
the Hill-Wheeler equation, trying to give a consistent description for the KN interaction and the relevant meson
and baryon spectra. In the calculation, besides the linear confining potential, the authors used only the Coulomb
term and the spin-spin interaction term multiplied by a phenomenological coefficient function of Gaussian type. The
calculated I = 0 channel S-wave phase shift is pretty good in comparison with the experiment; whereas for the I = 1
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channel S-wave phase shift, there appears a big discrepancy between the theoretical result and the experimental one.
The authors also calculated higher angular momentum phase shifts without including the spin-orbit coupling and
tensor force terms in the OGEP. Even though the results were considered to be quite reasonable, the calculation is
not complete theoretically because the spin-orbit coupling and tensor force terms in the OGEP were not taken into
account.

From the previous works mentioned above, it is clearly seen that a precise understanding of the KN interaction at
quark-gluon level still calls for a sophisticated quark potential model which can give a consistently good description
for not only the KN interaction, but also the KN interaction which has never been investigated in the past. For this
purpose, it is necessary to incorporate new physical ingredients into the model as suggested in Refs.[11,18]. In this
paper, we attempt to investigate the KN and KN interactions and their low-energy elastic phase shifts in a consistent
way within the quark potential model . The new features of this investigation include: (1) The potential model is
composed of the t-channel OGEP [1] and the s-channel OGEP [22] as well as a phenomenological confining potential.
The t-channel OGEP is responsible for the KN interaction, while for the KN interaction where the annihilation and
creation of a quark-antiquark (qq) pair appear, the s-channel OGEP is necessary to be considered as demonstrated
in our previous investigations of ππ and KK interactions [19,20]. In these investigations, it was shown that the
s-channel OGEP plays a dominant role for the ππ I = 0 channel S-wave scattering and is necessary to be considered
for the formation ofKK molecular states. As one knows, the two OGEPs are derived from QCD in the nonrelativistic
approximation of order p2/m2 and contain spin-independent terms such as the Coulomb, velocity-dependent terms and
spin-dependent terms such as the spin-spin interaction, spin-orbital coupling and tensor force terms. All these terms
are taken into account in our calculation as should be done in a theoretically consistent treatment. (2) Inclusion of
the QCD renormalization effect. It is well-known that the OGEPs are derived from the tree diagram approximation of
the S-matrix elements or the irreducible interaction kernels in the Bethe-Salpeter (B-S) equation. Obviously, to refine
the potential model, the QCD renormalization effect is necessary to be incorporated into the model. This can be done
by replacing the QCD coupling constant and quark masses in the OGEP with their effective ones which were derived
in our previous work in the one loop approximation and a mass-dependent momentum space subtraction [23]. Our
calculation indicates that the inclusion of the QCD renormalization effect gives an appreciable improvement on the
theoretical phase shifts, particularly, for the P-wave phase shifts. (3) The contribution from the color octet of the three
quark cluster (qqq) and the quark-antiquark cluster (qq) to the KN and KN scattering is considered because when
the kaon (antikaon) and nucleon interact, the color singlet states of the clusters (qqq) and (qq) are possibly polarized.
This consideration has been justified in the recent studies of meson production and decay phenomena [24,25]. In
these studies, the color octet of qq cluster plays an essential role in explaining the experimental data. According to
our calculation, the consideration of color octet can also improve the theoretical results. (4) Nonlocal KN and KN
effective interaction potentials are derived from the underlying interquark potentials by employing the RGM and used
to evaluate the phase shifts. We do not use the localized version of the potentials because an inappropriate localization
would damage the hermiticity of the potentials and induce other unexpected errors. (5) The effect of spin-orbital
coupling in the t-channel OGEP is necessarily suppressed in the present investigation in order to reproduce the P-wave
phase shifts. This is consistent with the requirement in the study of hadron spectroscopy. The suppression may be
achieved by a proper change of the coefficient function of the spin-orbit term in the effective intercluster potentials
which are derived from the corresponding term in the OGEP. With the considerations mentioned above, we obtain in
this paper a series of theoretical KN S-wave, P-wave and D-wave phase shifts which are in fairly good agreement with
the experimental data. In addition, a series of theoretical phase shifts for the KN elastic scattering are predicted.

The rest of this paper is arranged as follows: Section 2 is used to describe the quark potential model and show how
to derive the KN and KN effective interaction potentials. Section 3 serves to describe the calculation of the KN and
KN scattering phase shifts. In the last section, the calculated results are presented and discussions are made. There
are four appendices. In Appendix A, we show the construction of the color-flavor-spin wave function for the systems
under consideration. In Appendix B, the effective KN and KN interaction potentials derived in position space are
listed. In Appendix C, we briefly describe the derivation of the phase shift formula used in our calculation. Appendix
D is used to make some explanations on the QCD renormalization.

II. QUARK POTENTIAL MODEL AND EFFECTIVE KN AND KN POTENTIALS

According to the quark model, the KN ( KN ) system may be treated as two quark clusters: the K-cluster (qs)
( the K-cluster (qs)) and the N -cluster (qqq) where q = u or d. The effective KN interaction potential may be
extracted from the following Schrödinger equation for the interacting q4s system by the RGM

(T + V )Ψ = EΨ (1)
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where E, T, V and Ψ stand for the total energy, the kinetic energy, the interaction potential and the wave function of
the system respectively. In the center of mass frame,

T =
∑

i

⇀
p

2

i

2mi
− Tc (2)

where Tc represents the center of mass kinetic energy,

V =
5

∑

i<j=1

(V t
ij + V s

ij + V c
ij) (3)

here V t
ij , V

s
ij and V c

ij denote the t-channel OGEP, the s-channel OGEP and the confining potentials respectively. They
are separately written in the following. The t-channel OGEP represented in the momentum space is [26]

V t
ij =

4παsCt
ij

(
⇀
q −

⇀

k )2
{1 −

⇀

P
2

m2
ij
− (m2

i +m2
j)

8m2
i m2

j
(
⇀
q −

⇀

k )2 +
(mi−mj)
2mimjmij

⇀

P ·(
⇀
q +

⇀

k )

+ (
⇀
q +

⇀

k )2

4mimj
+ i

4mij
[
⇀

P ·(
⇀
q −

⇀

k ) · (
⇀
σi

mi −
⇀
σj

mj
)] − (

⇀
q −

⇀

k )2

4mimj

⇀
σi ·

⇀
σj

+ i
4mij

(
⇀
q ×

⇀

k ) · [(2 +
mj

mi
)

⇀
σi +(2 + mi

mj
)

⇀
σj ] +

(
⇀
q −

⇀

k )·
⇀
σi(

⇀
q −

⇀

k )·
⇀
σj

4mimj
}

(4)

where mij = mi +mj , αs is the QCD fine structure constant,
⇀
σi are the spin Pauli matrices for i-th particle, Ct

ij is
the t-channel color matrix defined as

Ct
ij = {

λa
i

2

λa
j

2 (
λa∗

i

2

λa∗

j

2 ), for qq(qq)

−λa
i

2

λa∗

j

2 , for qq
(5)

with λa being the Gell-Mann matrix,
⇀

P ,
⇀

k and
⇀
q are the total momentum, the initial state relative momentum, and

the final state relative momentum of the two interacting particles.
The s-channel OGEP is [20, 22]

V s
ij =

παsF s
ijCs

ij

2mm′ [(3+
⇀
σi ·

⇀
σj) − 5(m2+m′2)−4m′

8m2m′2

⇀

P
2

− 2
⇀

k
2

m2 − 2
⇀
q

2

m′2

−( (m2+m′2)
8m2m′2 +

⇀

k
2

m2 +
⇀
q

2

m′2 )
⇀
σi ·

⇀
σj + i

4m′2 (
⇀

P ×
⇀
q ) · (⇀

σi −
⇀
σj)

− i
4m2 (

⇀

P ×
⇀

k ) · (⇀
σi −

⇀
σj) − (m−m′)2

4m2

⇀

P · ⇀
σi

⇀

P · ⇀
σj

+ 1
4m2 (

⇀

P · ⇀
σi

⇀

k · ⇀
σj −

⇀

k · ⇀
σi

⇀

P · ⇀
σj +4

⇀

k · ⇀
σi

⇀

k · ⇀
σj)

+ 1
4m′2 (

⇀

P · ⇀
σi

⇀
q · ⇀

σj −
⇀
q · ⇀

σi

⇀

P · ⇀
σj +4

⇀
q · ⇀

σi

⇀
q · ⇀

σj)]

(6)

where m and m′ denote the quark (antiquark) masses before and after annihilation respectively, Cs
ij and F s

ij are the
s-channel color and flavor matrices, defined by

Cs
ij =

1

24
(λa

i − λa∗

j )2 (7)

and

F s
ij =

2

3
− (

1

2

⇀
τi ·

⇀
τj +V −

i V +
j + V +

i V −
j + U−

i U
+
j + U+

i U
−
j +

3

2
YiYj) (8)

here
⇀
τi are the isospin Pauli matrices for i-th particle, Yi the hypercharge operators, V +

i and V −
i ( U+

i and U−
i )

represent the rising and lowering operators of the V -spin (U -spin) respectively.
The confining potential, as was done in Ref.[10,11], is taken to be the harmonic oscillator one. In the momentum

space it is represented as

V c
ij = Ct

ij(2π)3µijω
2∇2

kδ
3(

⇀
q −

⇀

k ) (9)

where µij is the reduced mass of the interaction particles and ω force-strength parameter.
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Now let us construct the wave function of the KN system from the wave functions of clusters (qs) and (qqq). Since
there are identical particles between the two clusters, the basis function of the system may be represented as

ΦTMsm(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ )

= 1√
4
(1 − P14 − P24 − P34)ΨTM 1

2m(1, 2, 3, 4, 5)R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ )

(10)

where we number the three quarks in the N -cluster as 1, 2, 3 and the quark and antiquark in the K-cluster (or the anti-
quark and quark in theK-cluster) as 4 and 5, Pj4 (j = 1, 2, 3) symbolize the interchange operators, ΨTM 1

2m(1, 2, 3, 4, 5)

and R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) represent the color-isospin-spin wave function and the position space wave function respec-

tively which are constructed from the color-isospin-spin wave functions and the coordinate space wave functions of
nucleon and kaon. For the KN system, noticing that there is no identical particles between the two clusters (qs) and
(qqq), the basis wave function of the system may simply be written as

ΦTMsm(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) = ΨTM 1

2 m(1, 2, 3, 4, 5)R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) (11)

where ΨTM 1
2 m(1, 2, 3, 4, 5) and R(

⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) are the color-isospin-spin wave function and the position space

wave function constructed from the corresponding wave functions of nucleon and antikaon.
Since the KN system is treated as two clusters, when they interact, each cluster may be in color singlet 1 or in

color octet 8 as indicated in Refs.[12,20]. Thus, the color-spin-isospin wave function ΨTM 1
2 m(1, 2, 3, 4, 5) of the whole

system may be given by the color singlet part Ψ
(1)

TM 1
2m

(1, 2, 3, 4, 5) or the color octet part Ψ
(2)

TM 1
2m

(1, 2, 3, 4, 5) formed

by the color singlets or color octets of the two clusters. In principle, we may test a general color structure of system
under consideration which is given by the following linear combination

ΨTM 1
2m(1, 2, 3, 4, 5) = αΨ

(1)

TM 1
2m

(1, 2, 3, 4, 5) + βΨ
(2)

TM 1
2m

(1, 2, 3, 4, 5) (12)

where the coefficients α and β are required to satisfy

|α|2 + |β|2 = 1 (13)

The wave functions Ψ
(1)

TM 1
2m

(1, 2, 3, 4, 5) and Ψ
(2)

TM 1
2m

(1, 2, 3, 4, 5) are listed in Appendix A. They are constructed by

antisymmetry of the wave functions of identical particles in nucleon.
Because we limit our discussion to the interaction in the low-energy regime, it is appropriate to write the position

space basis function of the KN or KN system in the form

R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) = φ(+)

os (
⇀
p1,

⇀
ρ )φ(+)

os (
⇀
p2,

⇀
ρ )φ(+)

os (
⇀
p3,

⇀
ρ )φ(−)

os (
⇀
p4,

⇀
ρ )φ(−)

os (
⇀
p5,

⇀
ρ ) (14)

where φ
(+)
os (

⇀
pi,

⇀
ρ ) and φ

(−)
os (

⇀
pj ,

⇀
ρ ) are the lowest-lying harmonic oscillator states of the N -cluster and K-cluster given

in the momentum space,

φ(±)
os (

⇀
pi,

⇀
ρ ) = (2

√
πbi)

3/2 exp(−1

2
b2i

⇀
pi

2 ∓iλ±
⇀
pi ·

⇀
ρ ) (15)

in which
⇀
ρ is the vector representing the separation between the centers of mass of the two clusters and parameters

λ± are defined by

λ− = β1 =
3m1

4m1 +m2
, λ+ = β2 =

m1 +m2

4m1 +m2
(16)

here m1 denotes the mass of d and u quarks, m2 the mass of strange quark. The wave function in Eq.(14) can be
represented through the cluster coordinates in the form

R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) = XK(

⇀
q )XN (

⇀

k1,

⇀

k2)Γ(
⇀

Q,
⇀
ρ )ZCM (

⇀

P ) (17)

where XK(
⇀
q ) and XN (

⇀

k1,

⇀

k2) are the internal motion wave functions of the K(K)-cluster (qs) ((qs)) and the N -cluster

(qqq) with
⇀
q and

⇀

k1,
⇀

k2 being the relative momenta in the clusters (qs) ((qs)) and (qqq) respectively, Γ(
⇀

Q,
⇀
ρ ) is the
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wave function describing the relative motion between the two clusters with
⇀

Q being the relative momentum of the

two clusters and ZCM (
⇀

P ) the wave function for the center-of-mass motion of the whole system in which
⇀

P is the
total momentum of the system. According to the RGM, the wave function of the two clusters may be represented in
the form

ΨTMsm =

∫

d3ρΦTM 1
2 ms

(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ )f(−→ρ ) (18)

where ΦTM 1
2ms

(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) is the basis function defined in Eqs.(10) and (11) and f(

⇀
ρ ) is the unknown function

describing the relative motion of the two clusters. On substituting the above wave function in Eq.(1), according to

the well-known procedure, one may derive a resonating group equation satisfied by the function f(
⇀
ρ ). Then, by the

following transformation

f(−→ρ ) =

∫

d3RΓ(
⇀
ρ ,

⇀

R)Ψ(
⇀

R) (19)

where

Γ(
⇀
ρ ,

⇀

R) =
1√

2(2π)3
(
3β2

πb2
)3/4

∫

d3ke
1

6 β2
b2

⇀

k
2

+i
⇀

k ·(
⇀
ρ−

⇀

R)
(20)

in which b is the harmonic oscillator size parameter, the resonating group equation will be transformed to the following
Schrödinger equation satisfied by the relative motion of the two clusters

− 1

2µ
∇2−→
R

Ψ(
⇀

R) +

∫

d3R
′

V (
⇀

R,
⇀

R′)Ψ(
⇀

R′) = εΨ(
⇀

R) (21)

where ε, µ and Ψ(
⇀

R) are respectively the energy of relative motion, the reduced mass and the Schrödinger-type wave
function for the two clusters and

V (
⇀

R,
⇀

R′) = V t(
⇀

R,
⇀

R′) + V s(
⇀

R,
⇀

R′) + V c(
⇀

R,
⇀

R′) (22)

is the nonlocal KN ( KN ) effective interaction potential in which V t(
⇀

R,
⇀

R′), V s(
⇀

R,
⇀

R′) and V c(
⇀

R,
⇀

R′) are generated

by the t-channel OGEP, the s-channel OGEP and the confining potential. The potential V (
⇀

R,
⇀

R′) in the Schrödinger

equation is connected with the potential V (
⇀
ρ ,

⇀

ρ′) appearing in the resonating group equation by the following formula.

V (
⇀

R,
⇀

R′) =

∫

d3ρd3ρ
′

Γ(
⇀

R,
⇀
ρ )V (

⇀
ρ ,

⇀

ρ′)Γ(
⇀

ρ′,
⇀

R′) (23)

where V (
⇀
ρ ,

⇀

ρ′) is described in Appendix B. To compute the elastic scattering phase shifts, we need to calculate the
transition matrix between initial and final plane wave functions as follows

Tfi(
⇀

k ,
⇀

k′) =

∫

d3Rd3R′e−i
⇀

k ·
⇀

RV (
⇀

R,
⇀

R′)ei
⇀

k′·
⇀

R′

(24)

where
⇀

k′ and
⇀

k are the KN (KN) relative momenta for the initial and final states respectively. Upon substituting
Eq.(20) into Eq.(23), it is easy to find

Tfi(
⇀

k ,
⇀

k′) =
1

2
(
3β2

πb2
)3/2e

b2

6β2
(
⇀

k
2

+
⇀

k′

2

)
∫

d3ρd3ρ
′

e−i
⇀

k ·
⇀
ρ
V (

⇀
ρ ,

⇀

ρ′)ei
⇀

k′·
⇀

ρ′

(25)

This expression shows that to calculate the transition matrix, we may directly use the potential V (
⇀
ρ ,

⇀

ρ′) instead of

the potential V (
⇀

R,
⇀

R′).
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III. CALCULATION OF PHASE SHIFTS

The phase shifts of the KN (KN) low-energy elastic scattering are calculated in the Born approximation. As
argued in Appendix C and demonstrated in the previous literature [14, 15], the Born approximation can reasonably
describe hadron elastic low energy scattering processes. In this approximation and in the center-of-mass frame, the
l-th partial wave phase shift is expressed by the following formula whose derivation will be sketched in Appendix C

δIJ
l = −2MkT IJl

fi (k) (26)

where

M(E) =
E4 − (m2

K −m2
N )2

4E3
(27)

in which E is the total energy of the KN (KN) system, mK and mN are the masses of kaon and nucleon, k =|
⇀

k |=|
⇀

k′|
is the magnitude of relative momenta

⇀

k and
⇀

k′ in the case of elastic scattering and T IJl
fi (k) with isospin I, total

angular momentum J and orbital angular momentum l is the transition amplitude. This amplitude can generally be
expressed as

T IJl
fi (k) =

∑

m,m′,µ,µ′

CJM
lm 1

2ms
CJM

lm′ 1
2m′

s

∫

dΩ(
∧
k)dΩ(

∧
k′)Y ∗

lm′ (
∧
k′)Ylm(

∧
k)T

I
fi(

⇀

k ,
⇀

k′;ms,m
′
s) (28)

where CJM
lm 1

2ms
are the Clebsch-Gordan coefficients, Yl m(

∧
k) are the spherical harmonic functions and

T I
fi(

⇀

k ,
⇀

k′;ms,m
′
s) = 〈C; I,M ;

1

2
,ms | Vf i(

⇀

k ,
⇀

k′) | I,MI ;
1

2
,m′

s;C〉 (29)

are the matrix elements of the operator Vfi(
⇀

k ,
⇀

k′) defined in Eq.(25) between the color-spin-isospin wave functions
| I,MI ;

1
2 ,m

′
s;C〉 and | I,MI ;

1
2 ;ms;C〉 in which I, MI and 1

2 , ms are the isospin and spin quantum numbers of the

KN (KN) system respectively and C denotes the color singlet of the whole system. These matrix elements can be

easily calculated. The explicit expressions of the quantities T I
fi(

⇀

k ,
⇀

k′;ms,m
′
s) and T IJ l

f i (k), we think, are unnecessary
to be listed in this paper. We only show here numerical results of the theoretical phase shifts in Figs.1-6 using the
conventional partial wave notation LI2J . It is noted here that the formula in Eq.(28) is general for evaluating the
transition amplitude, particularly, in the case that the spin-orbit coupling and tensor force terms are present in the
nonlocal effective potentials.

We would like here to discuss the problem of suppression of the effect of spin-orbital coupling. It is a common
recognition in the study of hadron spectroscopy that the effect of the spin-orbital coupling term in the t-channel OGEP
ought to be suppressed by the corresponding term in the confining potential [2]. In Ref.[21], one of the authors in this
paper and his coworkers proposed a qq confining potential which was obtained from a general Lorentz structure of the
confinement. In the confining potential, there are various terms among which the spin-orbit coupling term is of a sign
opposite to the corresponding one in the OGEP. In this paper, to avoid the complexity of such a confining potential,
we alternatively take an effective treatment to achieve the spin-orbital suppression. Looking at the expression of the

potential V t(
⇀
ρ ,

⇀

ρ′) shown in Appendix B, one can see that there is a kind of factorial functions to appear in some

terms of the potential V t(
⇀
ρ ,

⇀

ρ′) which are of the form

g(x,
⇀
ρ ) =

∫

d3r

4πr
e−xr2+x

⇀
r ·

⇀
ρ

(30)

In particular, this function is related to the spin-orbit coupling term in the potential V t(
⇀
ρ ,

⇀

ρ′). The function g(x,
⇀
ρ )

may appropriately be replaced by an interpolating function such that

g(x,
⇀
ρ ) ≃ e(1−γ) xρ2

4

2 x
(31)

To obtain the above expression, we have used the approximate expression of the following integral
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f(x) =

∫ x

0

e−t2dt ≈ xe−γx2

(32)

As shown in Fig.5, when we take the parameter γ = 0.3, the function on the right hand side of Eq.(32) very approaches
the real value of the integral when x is not too large. However, as shown in Fig.6, the above value of γ leads to worse
P-wave phase shifts. In order to get better P-wave phase shifts, we have to take some larger value of γ which just
plays the role of suppressing the effect of spin-orbital coupling.

Finally, let us discuss the inclusion of QCD renomalization effect. As mentioned in Introduction, the OGEP is
derived from the S-matrix or the B-S irreducible interaction kernel in the tree diagram approximation. Obviously,
to improve our calculation, it is natural to consider the correction arising from QCD renormalization. This can be
done by replacing the QCD coupling constant and quark masses in the OGEP with the effective ones which are
obtained by solving the renormalization group equations satisfied by the renormalized coupling constant and quark
masses. This procedure, as proved in Ref.[27] and demonstrated in Appendix D, is equivalent to replacing the free
wave functions, the free propagators and the bare vertices in the tree diagrams with the exact ones. In the calculation
of this paper, we employ the effective coupling constant and quark masses given in Ref.[23] which were derived from
QCD in the one-loop approximation and the mass-dependent momentum space subtraction. These effective quantities
are suitable to any energy, particularly, to the low energy, unlike the results obtained in the minimal subtraction [28]
which actually are applicable only in the large momentum limit. The effective fine structure constant used has the
expression like this [23]

αR(λ) =
α0

R

1 +
α0

R

2π G(λ)
(33)

where αo
R is a coupling constant and G(λ) is a function of variable λ which has different expressions given by

the time-like momentum subtraction (the subtraction performed at time-like renormalization point) and the space-
like momentum subtraction (the subtraction carried out at the space-like renormalization point). For the time-like
momentum subtraction,

G(λ) = 11 lnλ− 2

3
Nf [2 +

√
3π − 2

λ2
+ (

2

λ2
+ 1)

√
λ2 − 4

λ
ln

1

2
(λ+

√

λ2 − 4)] (34)

where Nf is the quark flavor number which will be taken to be three in this paper. While, for the space-like momentum
subtraction,

G(λ) = 11 lnλ− 2
3Nf [ 2

λ2 − 2 − ( 2
λ2 − 1)

√
λ2+4
λ ln 1

2 (λ+
√
λ2 + 4)

+
√

5 ln 1
2 (1 +

√
5)]

(35)

in which λ is defined as λ =
√

q2/µ2 with q being a momentum variable and µ the fixed scale parameter. The
expression in Eq.(33) with the function G(λ) given either in Eq.(34) or in Eq.(35) will immediately goes over to the
result given in the minimal subtraction in the large momentum limit. The latter subtraction was performed at the
space-like renormalization point. It would be noted that in writing the above effective coupling constant, the mass
difference between different quarks is ignored for simplicity. The behaviors of the effective coupling constants given
in Eqs.(33)-(35) are described in Fig.7. From the figures, we see that the effective coupling constants given by the
time-like and space-like momentum subtractions have different behaviors in the low-energy regime. It is interesting
to note that the effective coupling constant given in the space-like momentum subtraction is almost the same as given
in the minimal subtraction in the regime. This situation happens only in the case of ignoring the mass difference
between different quarks and taking Nf = 3. In other cases, the difference between the results given by the both
subtractions will be manifest.

The effective quark mass is represented as

mR(λ) = mRe
−S(λ) (36)

where mR is the constant quark mass given at λ = 1 which will appropriately be chosen to be the constituent quark
mass in the quark potential model, S(λ) is a function which also has different expressions for the different subtractions.
For the time-like momentum subtraction,

S(λ) =
α0

R

π

1 − λ

λ
{2 + (

2

λ2
− 1 + λ

λ2
) ln | 1 − λ2 |} (37)

While, for the space-like momentum subtraction,
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S(λ) = S1(λ) + iS2(λ) (38)

where

S1(λ) =
α0

R

π
[(

3

λ2
+ 1) ln(1 + λ2) − 4

√
2] (39)

and

S2(λ) =
2α0

R

π
[
1

λ3
ln(1 + λ2) − 1

λ
+ 1 − ln

√
2] (40)

The behaviors of the effective quark masse given by the time-like momentum subtraction and the real part of the
effective quark mass given in the space-like momentum subtraction are depicted in Fig.8. The figures show that at low
energy the effective masses given in the both subtractions are not different so much. For the interaction taking place
in the t-channel, as explained in Appendix D, the transfer momentum is space-like, while for the interaction in the
s-channel, the transfer momentum is time-like. Therefore, for the t-channel OGEP, we will use the effective coupling
constant and quark masses given by the space-like momentum subtraction and in this case, we only adopt the real
part of the effective masses in our calculation; while, for the s-channel OGEP, the effective coupling constant and the
quark masses given in the time-like momentum subtraction will be employed. The variable λ is usually defined as a
ratio of the momentum related to the process of quark-gluon interactions. In this paper, as an effective treatment, we
directly define it as λ = k/µ where k is taken to be the magnitude of the relative momentum of the two interacting
particles K and N ( or K and N ).

IV. RESULTS AND DISCUSSIONS

This section is used to present calculated results for the KN ( KN ) elastic scattering phase shifts, discuss
adjustments of the theoretical parameters and analyze the effect of color octet and QCD renormalization as well
as the suppression of the spin-orbital coupling. First, we focus our attention on the KN scattering. The theoretical
phase shifts of the KN scattering are depicted in Figs.1-3. In the figures, the solid lines represent the final results
obtained by considering the contributions arising from the color octet, the QCD renormalization and the spin-orbit
suppression. To exhibit the effects of the color octet and the QCD renormalization, in the figures, we also show the
results without considering these effects. Such results are calculated with the same parameters as for the solid lines
and represented by the dotted and dashed lines respectively in Figs.1-3. The figures show us that the agreement
between the final calculated results and the experimental data is good for the phase shifts of all S-waves, P13 wave
and D13 wave in the low-energy domain, particularly, in the region of the laboratory momentum less than 600 MeV
to which the nonrelativistic quark potential model is considered to be applicable. For the other P-wave and D-wave
phase shifts, the agreement is qualitatively reasonable. In obtaining these results, we used the parameters as follows:
the QCD coupling constant α0

s = 0.23, the constituent quark masses mu = md = 350 MeV and ms = 550 MeV,
the size parameter of harmonic oscillator b = 0.255 fm, the force strength of confinement ω = 0.2 GeV , the color
combination coefficient α = 0.915, the scale parameter of QCD renormalization µ = 0.195 GeV and the parameter
of spin-orbital suppression γ = 0.45. These parameters are adjusted to give a better fit to the KN elastic scattering
experimental data, mainly to the S-wave phase shifts because the KN elastic scattering data are available and rather
sufficient [29,30]. In comparison with the previous results given in Refs.[10, 11, 17, 18], our calculation achieves a
considerable improvement on the theoretical phase shifts for all the partial waves not only in the magnitude, but
also in the sign. Especially, for the P13 wave phase shift, it now gets a right sign in our calculation, opposite to the
previous result which was given a wrong sign [17].

Now let us analyze the effects of the color octet, the QCD renormalization and the suppression of the spin-orbital
coupling. In adjusting the theoretical parameters, we found that the calculated results are sensitive to the parameters
α and b. Any small change would cause noticeable influence on calculated values. For instance, when we let α increase,
the absolute values of S-wave phase shifts decrease rather fast. In particular, when the α tends to unity, i.e. the color
octet is absent, as denoted by the dotted lines in Fig.1, we obtain the S-wave phase shifts similar to those given in
Ref.[17]. In this case, certainly, we may give a better fit of the calculated result to the experimental one by adjusting
the parameter b and others, but, we failed to simultaneously get a good result for another S-wave phase shift, as was
demonstrated previously in Ref.[18]. Only when the color octet is considered, it is possible to get consistently good
results for the both S-wave phase shifts as denoted by the solid lines in Fig.1. This suggests that the introduction of
the color octet is necessary in our calculation. From Figs.2 and 3, we also see that the inclusion of the color octet
gives a appreciable effect on the P and D wave phase shifts.
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In this paper, the two kinds of spin-orbital terms in the t-channel OGEP: the spin-symmetric term and the spin-
antisymmetric one are all taken into account. In this case, we still encountered the puzzling problem for the P-wave
phase shifts as was revealed originally in Ref.[11] and mentioned in the Introduction. If the QCD renormalization
effect is not considered, except for the P11 and P13 wave phase shifts, it seems to be able to reproduce the phase shifts
for the other phase shifts by readjusting the parameters involved. However, as exhibited in Fig.2, for the P11 and P13

waves, it is impossible to get a satisfactory result of their phase shifts. Particularly, for the P13 wave, its phase shift is
always of a wrong sign as the previous result given in Ref.(17). This problem can only be resolved by taking the QCD
renormalization effect into account in our calculation. In this way, the P11 and P13 wave phase shifts are accessible
to the experimental values. As shown in Fig.3, the QCD renormalization effect gives an essential improvement on
the D-wave phase shifts as well. Particularly, it renders the D13 and D15 wave phase shifts to have the right signs.
But, this effect is not noteworthy for the S-wave phase shifts. This explains why the previous investigations could
give some rather reasonable results for the S-wave phase shift. However, as shown in our calculation, in order to get
the desirable phase shifts for all partial waves, it is necessary to incorporate the QCD renormalization effect into the
model used. In addition, to achieve such results, as mentioned in Sect.3, the spin-orbital coupling effect is necessary
to be suppressed. The necessity of the suppression is separately illustrated in Fig.6 for the P-wave phase shifts only.
This is because the spin-orbit term in the effective potential gives no contribution to the S-wave scattering and it
mainly affect the P-wave scattering. Fig.6 indicates that when the parameter γ is taken to be the value γ = 0.3

which makes the function g(x,
⇀
ρ ) reach its real values, the P01 wave and the P11 wave phase shifts are far from the

experimental ones, but, when the γ is getting larger, the absolute values of the P01 wave and the P11 wave phase
shifts become to be comparable with the experimental results. For the other P-waves, the phase shifts evaluated at
γ = 0.45 are also better than those given at γ = 0.3.

Let us turn to the KN scattering. At present, the low energy elastic and inelastic experimental data for the KN
scattering are insufficient [31-33]. Therefore, the detailed partial wave analysis for the scattering is almost absent.
But it is a common conclusion suggested in the previous investigations that the K−p interaction is strongly attractive
[34]. For the KN scattering in the I = 1channel, i.e., for the K− − neutron scattering, there is almost no available
data and different theoretical models give different predictions. In view of this situation, our calculated results for
the KN phase shifts can only be viewed as a theoretical prediction [35,36]. It would be noted that unlike the KN
interaction for which the exchanged part of the effective potential generated from the t-channel OGEP is dominant,
for the KN interaction, there is no such an exchanged potential. Instead, the direct part of the s-channel OGEP
plays an essential role and leads to an attractive interaction as seen from the positiveness of the phase shifts plotted
in Fig.4. In the figure, the prediction for the P and D wave phase shifts are simultaneously given as well. all the
phase shifts in the figure are presented in the momentum region less than 200 MeV where any resonance could not
appear. Here we take the K−p S-wave phase shift given in this paper as an example to estimate the reasonability of
our calculation. From the relation

√
π | al

eff |≃| f l
+ | [37] where al

eff is the effective scattering length and f l
+ is the

l-th wave scattering amplitude and the formulas given in (C.2) and (C.15), we have δIJ
l ≃ kRe(al

eff ). By this relation
and the calculated S-wave phase shift, it is found that the real part of the scattering length is above 0.58 which just
lies in the range shown in Refs.[33,35]. In addition, we note that our calculation predicts a weaker attraction for the
K− − neutron interaction which is different from previous result (see nucl-th/0004021).

At last, it should be emphasized that the quark potential model used in this paper was established in the nonrel-
ativistic approximation of order p2/m2, therefore, the calculated results are only valid for the KN and KN elastic
scattering in the low energy domain. The model used can not give a complete description for the inelastic scattering
and the production of resonances which would appear for some higher partial waves in the higher energy regime.
To explore the KN and KN inelastic scattering in the higher energy regime, it is necessary to apply a relativistic
approach or a nonperturbative theory. Anyway, the investigation based on the constituent quark model is meaningful
as it is not only helpful to understand KN and KN interactions from the underlying dynamics, but also provides a
firm basis of studying five-quark bound states.
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VI. APPENDIX A: THE COLOR-FLAVOR-SPIN WAVE FUNCTIONS

In general, the color singlet color state of the five quark cluster (q4s) or (q3qs) may be built up by the color
singlets of the N -cluster (qqq) and K-cluster (qs) (or the K-cluster (qs)) or the color octets of the two subclusters.
Correspondingly, for the five quark cluster, there are two classes of color-flavor-spin wave functions denoted by

Ψ
(1)

TM 1
2m

(1, 2, 3, 4, 5) and Ψ
(2)

TM 1
2m

(1, 2, 3, 4, 5) which are color singlets as a whole, but associated respectively with the

color singlets and the color octets of the two subclusters. In the function Ψ
(1)

TM 1
2m

(1, 2, 3, 4, 5), the color-flavor-spin

(CFS) wave function Ψ
(1)
1
2M1

1
2ms

(1, 2, 3)N for the N -cluster which is totally antisymmetric ( of the symmetry denoted

by the Young diagram [13]cfs ) is constructed from the C-G coupling of [13]C × [3]FS where [13]C and [3]FS are the
Young diagrams denoting the antisymmetric color singlet and the symmetric flavor-spin states respectively. In the

function Ψ
(2)

TM 1
2m

(1, 2, 3, 4, 5), the antisymmetric CFS wave function Ψ
(1)
1
2M1

1
2ms

(1, 2, 3)N for the N -cluster is given by

the C-G coupling of [21]C × [21]FS where [21]C and [21]FS represent the color octet state and the flavor-spin state of
mixed symmetry respectively. The explicit expressions of the wave functions mentioned above can easily be written
out by the familiar method given in the group theory, as displayed in the following.

The first class of the CFS wave function in Eq.(12) for the whole system is

Ψ
(1)

TM 1
2m

(1, 2, 3, 4, 5) =
∑

M1M2

CTM
1
2M1

1
2M2

Ψ
(1)
1
2M1

1
2m

(1, 2, 3)NΨ
(1)
1
2M200

(4, 5)K (A.1)

where Ψ
(1)
1
2M1

1
2m

(1, 2, 3)N , as mentioned before, is the CFS wave function for the N -cluster and Ψ
(1)
1
2M200

(4, 5)K is the

CFS wave function for the K-cluster. They are represented separately as

Ψ
(1)
1
2M1

1
2ms

(1, 2, 3)N = ξ0c (1, 2, 3)χ
(1)
1
2M1

1
2 ms

(1, 2, 3) (A.2)

where

ξ0c (1, 2, 3) =
1√
6
ǫabcq

a(1)qb(2)qc(3) (A.3)

represents the color singlet wave function of the N -cluster and

χ
(1)
1
2M1

1
2 ms

(1, 2, 3) =
1√
2
[χa

1
2M1

(1, 2, 3)ϕa
1
2ms

(1, 2, 3) + χb
1
2M1

(1, 2, 3)ϕb
1
2ms

(1, 2, 3)] (A.4)

is the isospin-spin wave function of the N -cluster in which the isospin wave functions χa
1
2M1

(1, 2, 3) and χb
1
2M1

(1, 2, 3)

and the spin wave functions ϕa
1
2ms

(1, 2, 3) and ϕa
1
2ms

(1, 2, 3) are expressed as follows

χa
1
2M1

(1, 2, 3) =
∑

m,m3,m1,m2

C
1
2M1

1m 1
2m3

C1m
1
2m1

1
2 m2

χ 1
2m1

(1)χ 1
2m2

(2)χ 1
2m3

(3)

χb
1
2M1

(1, 2, 3) =
∑

m1,m2,m3

C
1
2M1

00 1
2M1

C00
1
2 m1

1
2m2

χ 1
2m1

(1)χ 1
2m2

(2)χ 1
2m3

(3)

ϕa
1
2ms

(1, 2, 3) =
∑

m,m3,m1,m2

C
1
2ms

1m 1
2m3

C1m
1
2m1

1
2m2

ϕ 1
2 m2

(1)ϕ 1
2m2

(2)ϕ 1
2m3

(3)

ϕb
1
2ms

(1, 2, 3) =
∑

m1,m2,m3

C
1
2 ms

00 1
2ms

C00
1
2m1

1
2m2

ϕ 1
2m2

(1)ϕ 1
2m2

(2)ϕ 1
2m3

(3)

(A.5)

The CFS wave function of the K- cluster is

Ψ
(1)
1
2M00

(4, 5)K = C0(4, 5)χ 1
2M (4, 5)ϕ00(4, 5) (A.6)

where C0(4, 5), χ 1
2M (4, 5) and ϕ00(4, 5) are the color, isospin and spin wave functions, respectively. Since there is no

identical particles in the cluster, these wave functions are of the forms

C0(4, 5) =
1√
3
qa(4)qa(5) (A.7)

and
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χ 1
2 M (4, 5) =

∑

m1 m2

C
1
2M
1
2m100

χ 1
2 m1

(4)χ00(5)

ϕ00(4, 5) =
∑

m1 m2

C00
1
2 m1

1
2m2

ϕ 1
2m1

(4)ϕ 1
2m2

(5)
(A.8)

For the second class of the CFS wave function in Eq.(12), it can be represented as

Ψ
(2)

TM 1
2m

(1, 2, 3, 4, 5) =
∑

M1M2

∑

c

CTMT
1
2M1

1
2M2

Ψ
(2)c
1
2M1

1
2m

(1, 2, 3)NΨ
(2)c
1
2M00

(4, 5)K (A.9)

where Ψ
(2)c
1
2 M1

1
2m

(1, 2, 3)N and Ψ
(2)c
1
2M00

(4, 5)K are the second class of CFS wave functions for the N -cluster and the

K-cluster respectively. Their expressions are shown in the following.

Ψ
(2)C
1
2 M1

1
2ms

(1, 2, 3)N =
1√
2
[ξA

c (1, 2, 3)χ
(2)B
1
2M1

1
2ms

(1, 2, 3)− ξB
c (1, 2, 3)χ

(2)A
1
2 M1

1
2ms

(1, 2, 3)] (A.10)

where ξA
c (1, 2, 3) and ξB

c (1, 2, 3) are the color octet wave functions given respectively by the Young-Tableau [211] and

the Young-Tableau [121] and χ
(2)A
1
2M1

1
2ms

(1, 2, 3) and χ
(2)B
1
2M1

1
2ms

(1, 2, 3) are the corresponding isospin-spin wave functions.

Their expressions are

ξA
c (1, 2, 3) = 1

2ǫijb[q
a(1)qi(2)qj(3) + qa(2)qi(1)qj(3)]

ξB
c (1, 2, 3) = 1

2
√

3
ǫijb[q

a(1)qi(2)qj(3) − qa(2)qi(1)qj(3) − 2 qa(3)qi(1)qj(2)]

χ
(2)A
1
2M1

1
2ms

(1, 2, 3) = 1√
2
[χa

1
2M1

(1, 2, 3)ϕa
1
2ms

(1, 2, 3) − χb
1
2M1

(1, 2, 3)ϕb
1
2ms

(1, 2, 3)]

χ
(2)B
1
2M1

1
2ms

(1, 2, 3) = − 1√
2
[χa

1
2M1

(1, 2, 3)ϕb
1
2ms

(1, 2, 3) + χb
1
2 M1

(1, 2, 3)ϕa
1
2ms

(1, 2, 3)]

(A.11)

The second class of the CFS wave function for the K(or K)-cluster is as follows

Ψ
(2)c
1
2M00

(4, 5)π = Cb
a(4, 5)χ 1

2M (4, 5)ϕ00(4, 5) (A.12)

where

Cb
a(4, 5) = qb(4)qa(5) − 1

3
δb
aq

c(4)qc(5) (A.13)

is the color octet for the K(K) cluster and the other two functions χ 1
2M (4, 5), ϕ00(4, 5) are the same as in (A.8).

VII. APPENDIX B: THE EFFECTIVE KN AND KN INTERACTION POTENTIALS

In this appendix, we show the nonlocal effective interaction potentials of the KN and KN systems which are
derived from the interquark potentials and the RGM.

The KN nonlocal effective potential Vt(
⇀
ρ ,

⇀

ρ′) which is derived from the t-channel OGEP written in Eq.(4) is divided

into two parts: the direct part V D
t (

⇀
ρ ,

⇀

ρ′) and the exchanged part V ex
t (

⇀
ρ ,

⇀

ρ′):

Vt(
⇀
ρ ,

⇀

ρ′) = V D
t (

⇀
ρ ,

⇀

ρ′) − V t
ex(

⇀
ρ ,

⇀

ρ′) (B.1)

where

V ex
t (

⇀
ρ ,

⇀

ρ′) = V ex
t (

⇀
ρ ,

⇀

ρ′)14 + V ex
t (

⇀
ρ ,

⇀

ρ′)24 + V ex
t (

⇀
ρ ,

⇀

ρ′)34 (B.2)

here the superscript ab = 14, 24 or 34 designate which pair of quarks interchange. Each part of the potential contains
several terms as shown in the following

V D
t (

⇀
ρ ,

⇀

ρ′) = V D
15 (

⇀
ρ ,

⇀

ρ′) + V D
25 (

⇀
ρ ,

⇀

ρ′) + V D
35 (

⇀
ρ ,

⇀

ρ′)

+V D
14 (

⇀
ρ ,

⇀

ρ′) + V D
24 (

⇀
ρ ,

⇀

ρ′) + V D
34 (

⇀
ρ ,

⇀

ρ′)
(B.3)
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V ex
t (

⇀
ρ ,

⇀

ρ′)ab = V ex
14 (

⇀
ρ ,

⇀

ρ′)ab + V ex
24 (

⇀
ρ ,

⇀

ρ′)ab + V ex
34 (

⇀
ρ ,

⇀

ρ′)ab + V ex
12 (

⇀
ρ ,

⇀

ρ′)ab + V ex
23 (

⇀
ρ ,

⇀

ρ′)ab

+V ex
15 (

⇀
ρ ,

⇀

ρ′)ab + V ex
25 (

⇀
ρ ,

⇀

ρ′)ab + V ex
35 (

⇀
ρ ,

⇀

ρ′)ab + V ex
45 (

⇀
ρ ,

⇀

ρ′)ab + V ex
13 (

⇀
ρ ,

⇀

ρ′)ab
(B.4)

the subscript in each term on the right hand sides (RHS) of (B.3) and (B.4) marks the two interacting quarks: one in

the N -cluster and another in the K-cluster. The terms V D
ij (

⇀
ρ ,

⇀

ρ′) and V ex
ij (

⇀
ρ ,

⇀

ρ′)ab are derived by the RGM in such
a way

V D
ij (

⇀
ρ ,

⇀

ρ′) =

∫ 5
∏

i=1

d
⇀
pk

(2π)3
d

⇀

p′k
(2π)3

〈R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) | V t

ij | R(
⇀

p′1,
⇀

p′2,
⇀

p′3,
⇀

p′4,
⇀

p′5;
⇀

ρ′)〉 (B.5)

and

V ex
ij (

⇀
ρ ,

⇀

ρ′)ab =

∫ 5
∏

i=1

d
⇀
pk

(2π)3
d

⇀

p′k
(2π)3

〈R(
⇀
p1,

⇀
p2,

⇀
p3,

⇀
p4,

⇀
p5;

⇀
ρ ) | V t

ijPab | R(
⇀

p′1,
⇀

p′2,
⇀

p′3,
⇀

p′4,
⇀

p′5;
⇀

ρ′)〉 , (B.6)

where the quark potential V t
ijwas denoted in Eq.(4) and the position space wave function was given in Eq.(14).

First we describe the ten terms on the RHS of (B.4). By introducing the following functions:

g(x,
⇀
ρ ) =

∫

d3r
4πre

−xr2+x
⇀
r ·

⇀
ρ

f t
24(

⇀
ρ ,

⇀

ρ′)ex = e−
⇀
ρ ·

⇀

ρ′

2b2
−

⇀
ρ

2

8b2
− 3 β2

4b2
(
⇀
ρ−

⇀

ρ′)2

f t
25(

⇀
ρ ,

⇀

ρ′)ex = e−
⇀
ρ ·

⇀

ρ′

2b2
− α2

4b2
(
⇀
ρ +

⇀

ρ′)2− 3β2
4 b2

(
⇀
ρ−

⇀

ρ′)2

f t
15(

⇀
ρ ,

⇀

ρ′)ex = e−
⇀
ρ ·

⇀

ρ′

2b2
− α2

4b2

⇀
ρ

2

− 3β2
4b2

(
⇀
ρ−

⇀

ρ′)2

f t
14(

⇀
ρ ,

⇀

ρ′)ex = e−
⇀
ρ ·

⇀

ρ′

2b2
− 1

8b2
(
⇀
ρ−

⇀

ρ′)2− 3β2
4b2

(
⇀
ρ−

⇀

ρ′)2

f t
23(

⇀
ρ ,

⇀

ρ′)ex = e−
⇀
ρ ·

⇀

ρ′

2b2
− 3β2

4 b2
(
⇀
ρ−

⇀

ρ′)2

(B.7)

the exchanged terms of the potential V ex
t (

⇀
ρ ,

⇀

ρ′)14 can be written as:

V ex
24 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

24

(2πb2)3/2 f
t
24(

⇀
ρ ,

⇀

ρ′)ex{g( 1
2b2 ,

⇀
ρ ) − 1

4m2
1
(1+

⇀
σ 2 · ⇀

σ 4) − 1
4m2

1b2
[

⇀
ρ

2

4b2

− 1
b2 (2β2−1

2

⇀
ρ −β2

⇀

ρ′)2 − 1
2

⇀
σ 2 · ⇀

σ 4 +i β2

8 b2 (1 + γ)(
⇀
ρ ×

⇀

ρ′) · (⇀
σ 2 − ⇀

σ 4)

+ 1
16b2 (1 + γ2)

⇀
ρ · ⇀

σ 2

⇀
ρ · ⇀

σ 4]g(
1

2b2 ,
⇀
ρ )}

(B.8)

V ex
34 (

⇀

R,
⇀

R′)14 =
4παsCt

34

(2πb2)3/2 f
t
24(

⇀
ρ ,

⇀

ρ′)ex{g( 1
2 b2 ,

⇀
ρ ) − 1

4m2
1
(1+

⇀
σ 3 · ⇀

σ 4) − 1
4m2

1b2
[

⇀
ρ

2

4b2

− 1
b2 (2β2−1

2

⇀
ρ −β2

⇀

ρ′)2 − 1
2

⇀
σ 3 · ⇀

σ 4 +i β2

8b2 (1 + γ)(
⇀
ρ ×

⇀

ρ′) · (⇀
σ 3 − ⇀

σ 4)

+ 1
16b2 (1 + γ2)

⇀
ρ · ⇀

σ 3

⇀
ρ · ⇀

σ 4]g(
1

2b2 ,
⇀
ρ )}

(B.9)

V ex
14 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

14

(2πb2)3/2 f
t
14(

⇀
ρ ,

⇀

ρ′)ex{g( 1
2b2 ,

⇀
ρ −

⇀

ρ′) − 1
4m2

1
(1+

⇀
σ 1 · ⇀

σ 4)

− 1
4m2

1b2
[− (β2−β1)

2

4b2 (
⇀
ρ −

⇀

ρ′)2 + (
⇀
ρ +

⇀

ρ′)2

b2 − 9 − 1
2

⇀
σ 1 · ⇀

σ 4 +i 1
b2 (1 + γ)(

⇀
ρ ×

⇀

ρ′) · (⇀
σ 1 +

⇀
σ 4)

+ 1
16b2 (1 + γ2)(

⇀
ρ −

⇀

ρ′)· ⇀
σ 1 (

⇀
ρ −

⇀

ρ′)· ⇀
σ 4]g(

1
2b2 ,

⇀
ρ −

⇀

ρ′)}

(B.10)

V ex
12 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

12

(2πb2)3/2 f
t
24(

⇀

ρ′,
⇀
ρ )ex{g( 1

2b2 ,
⇀

ρ′) − 1
4m2

1
(1+

⇀
σ 1 · ⇀

σ 2) − 1
4m2

1b2
[

⇀

ρ′

2

4b2

− 1
b2 (2β2−1

2

⇀

ρ′ −β2

⇀
ρ )2 − 1

2

⇀
σ 1 · ⇀

σ 2 +i β2

8b2 (1 + γ)(
⇀

ρ′ ×
⇀
ρ ) · (⇀

σ 1 − ⇀
σ 2)

+ 1
16b2 (1 + γ2)

⇀

ρ′ · ⇀
σ 1

⇀

ρ′ · ⇀
σ 2]g(

1
2b2 ,

⇀

ρ′)}

(B.11)
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V ex
13 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

13

(2πb2)3/2 f
t
24(

⇀

ρ′,
⇀
ρ )ex{g( 1

2 b2 ,
⇀

ρ′) − 1
4m2

1
(1+

⇀
σ 1 · ⇀

σ 3)

− 1
b2 (2β2−1

2

⇀

ρ′ −β2

⇀
ρ )2 − 1

2

⇀
σ 1 · ⇀

σ 3 +i β2

8b2 (1 + γ)(
⇀

ρ′ ×
⇀
ρ ) · (⇀

σ 1 − ⇀
σ 3)

+ 1
16b2 (1 + γ2)

⇀

ρ′ · ⇀
σ 1

⇀

ρ′ · ⇀
σ 3]g(

1
2b2 ,

⇀

ρ′)}

(B.12)

V ex
23 (

⇀
ρ ,

⇀

ρ′)14 =
4παsC

t
23

(2πb2)3/2
f t
23(

⇀
ρ ,

⇀

ρ′)ex[b2 − 1

4m2
1

−
⇀
σ 2 · ⇀

σ 3

6m2
1

+
β2

2

4m2
1b

2
(1 + γ2)(

⇀
ρ −

⇀

ρ′)2] (B.13)

V ex
15 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

15

(πb2/α1)3/2 f
t
15(

⇀
ρ ,

⇀

ρ′)ex{g(α2

b2 ,
⇀
ρ ) − (

m2
1+m2

2

8m2
1m2

2
+

⇀
σ 1·

⇀
σ 5

4m1m2
) − 1

4(m1+m2)2b2 [ 6
α1

− (α1

⇀
ρ−β1

⇀
ρ +β1

⇀

ρ′)2

α2
1b2

− α2β1

4α1b2 i(1 − γ)(
⇀
ρ ×

⇀

ρ′) · [(1 + m2

m1
)

⇀
σ 1 −(1 + m1

m2
)

⇀
σ 5]]g(

α2

b2 ,
⇀
ρ )

− 1
4m1m2b2 [6α2 − α2(α1−α2)β1

α1b2

⇀
ρ ·

⇀

ρ′ −α2(α1−β1)
2−α2β1β2

α1b2

⇀
ρ

2

−α2
⇀
σ 1 · ⇀

σ 5

− α2
2

4 b2 (1 − γ2)
⇀
ρ · ⇀

σ 1

⇀
ρ · ⇀

σ 5]g(
α2

b2 ,
⇀
ρ )}

(B.14)

V ex
25 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

25

(πb2/α1)3/2 f
t
25(

⇀
ρ ,

⇀

ρ′)ex{g(α2

b2 ,
⇀
ρ +

⇀

ρ′) − (
m2

1+m2
2

8m2
1m2

2
+

⇀
σ 2·

⇀
σ 5

4m1m2
)

− 1
4(m1+m2)2b2 [ 6

α1
− (β2−α2)2

α2
1b2

(
⇀
ρ −

⇀

ρ′)2 + α2(α1−β1)
2α1b2 i(1 − γ)(

⇀
ρ ×

⇀

ρ′) · [(1 + m2

m1
)

⇀
σ 2

−(1 + m1

m2
)

⇀
σ 5]]g(

α2

b2 ,
⇀
ρ +

⇀

ρ′)]]g(α2

b2 ,
⇀
ρ +

⇀

ρ′) − 1
4m1m2b2 [6α2 + α2

b2 (α1 − β1

α1

−2α2β2)(
⇀
ρ −

⇀

ρ′)2 − α2
⇀
σ 2 · ⇀

σ 5 +
α2

2

2b2 i(1 + γ)(
⇀
ρ ×

⇀

ρ′) · [(2 + m2

m1
)

⇀
σ 2

+(2 + m1

m2
)

⇀
σ 5] − α2

2

4b2 (1 − γ2)(
⇀
ρ +

⇀

ρ′)· ⇀
σ 2 (

⇀
ρ +

⇀

ρ′)· ⇀
σ 5]g(

α2

b2 ,
⇀
ρ +

⇀

ρ′)}

(B.15)

V ex
35 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

35

(πb2/α1)3/2 f
t
25(

⇀
ρ ,

⇀

ρ′)ex{g(α2

b2 ,
⇀
ρ +

⇀

ρ′) − (
m2

1+m2
2

8m2
1m2

2
+

⇀
σ 3·

⇀
σ 5

4m1m2
)

− 1
4(m1+m2)2b2 [ 6

α1
− (β2−α2)2

α2
1b2

(
⇀
ρ −

⇀

ρ′)2 + α2(α1−β1)
2α1b2 i(1 − γ)(

⇀
ρ ×

⇀

ρ′) · [(1 + m2

m1
)

⇀
σ 3

−(2 + m1

m2
)

⇀
σ 5]]g(

α2

b2 ,
⇀
ρ +

⇀

ρ′) − 1
4m1m2b2 [6α2 + α2

b2 (α1 − β1

α1
− 2α2β2)(

⇀
ρ −

⇀

ρ′)2

−α2
⇀
σ 3 · ⇀

σ 5 +
α2

2

2 b2 i(1 + γ)(
⇀
ρ ×

⇀

ρ′) · [(2 + m2

m1
)

⇀
σ 3 +(2 + m1

m2
)

⇀
σ 5]

− α2
2

4b2 (1 − γ2)(
⇀
ρ +

⇀

ρ′)· ⇀
σ 3 (

⇀
ρ +

⇀

ρ′)· ⇀
σ 5]g(

α2

b2 ,
⇀
ρ +

⇀

ρ′)}

(B.16)

V ex
45 (

⇀
ρ ,

⇀

ρ′)14 =
4παsCt

45

(πb2/α1)3/2 f
t
15(

⇀

ρ′,
⇀
ρ )ex{g(α2

b2 ,
⇀

ρ′) − (
m2

1+m2
2

8m2
1m2

2
+

⇀
σ 4·

⇀
σ 5

4m1m2
) − 1

4(m1+m2)2b2 [ 6
α1

− (α1

⇀

ρ′−β1

⇀

ρ′+β1

⇀
ρ )2

α2
1b2

− α2β1

4α1b2 i(1 − γ)(
⇀

ρ′ ×
⇀
ρ ) · [(1 + m2

m1
)

⇀
σ 4 −(1 + m1

m2
)

⇀
σ 5]]g(

α2

b2 ,
⇀

ρ′)

− 1
4m1m2b2 [6α2 − α2(α1−α2)β1

α1b2

⇀
ρ ·

⇀

ρ′ −α2(α1−β1)
2−α2β1β2

α1b2

⇀

ρ′
2

−α2
⇀
σ 4 · ⇀

σ 5

− α2
2

4b2 (1 − γ2)
⇀

ρ′ · ⇀
σ 4

⇀

ρ′ · ⇀
σ 5]g(

α2

b2 ,
⇀

ρ′)}

(B.17)

in which α1 = m1

m1+m2
, α2 = m2

m1+m2
. The other exchanged potential V ex

t (
⇀
ρ ,

⇀

ρ′)24 and V ex
t (

⇀
ρ ,

⇀

ρ′)34 can directly be
written out by changing the superscripts 14 to 24 and 34.

The terms of the direct part of the potential in (B.3) are shown below

V D
24 (

⇀
ρ ,

⇀

ρ′) =
4παsCt

24

(2πb2)3/2 f
t
24(

⇀
ρ ,

⇀

ρ′)D{g( 1
2b2 ,

⇀
ρ +

⇀

ρ′) + 1
4m2

1
(1− ⇀

σ 2 · ⇀
σ 4) − 1

4m2
1b2

[6 − 1
2

⇀
σ 2 · ⇀

σ 4

− (β2−β1)
2

4b2

⇀
ρ

2

+i 3
8b2 (1 + γ)(

⇀
ρ ×

⇀

ρ′) · (⇀
σ 2 +

⇀
σ 4) − 1

4b2 (
⇀
ρ −

⇀

ρ′)2 + iβ2−β1

8b2 (1 − γ)(
⇀
ρ ×

⇀

ρ′)

·(⇀
σ 2 − ⇀

σ 4) + 1
16b2 (1 + γ2)(

⇀
ρ +

⇀

ρ′)· ⇀
σ 2 (

⇀
ρ +

⇀

ρ′)· ⇀
σ 4]g(

1
2b2 ,

⇀
ρ +

⇀

ρ′)}

(B.18)

where

f t
24(

⇀
ρ ,

⇀

ρ′)D = e−
3β2+1

4b2
(
⇀
ρ−

⇀

ρ′)2− 3

16b2
(
⇀
ρ +

⇀

ρ′)2 (B.19)
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The terms V D
14 (

⇀
ρ ,

⇀

ρ′) and V D
34 (

⇀
ρ ,

⇀

ρ′) in (B.3) have the same form as shown above except for the subscripts 24 being
changed to 14 and 34.

The term V D
25 (

⇀
ρ ,

⇀

ρ′) in (B.3) is of the form

V D
25 (

⇀
ρ ,

⇀

ρ′) =
4παsCt

25

(πb2/α1)3/2 f
t
25(

⇀
ρ ,

⇀

ρ′)D{g(α2

b2 ,
⇀
ρ +

⇀

ρ′) − (
m2

1+m2
2

8m2
1m2

2
+

⇀
σ 2·

⇀
σ 5

4m1m2
)

− 1
4(m1+m2)2b2 [ 6

α1
− (β2−α2)2

α2
1b2

(
⇀
ρ −

⇀

ρ′)2 + α1−β1

2αb2 i(1 + γ)(
⇀
ρ ×

⇀

ρ′) · [(1 + m2

m1
)

⇀
σ 2

−(1 + m1

m2
)

⇀
σ 5]]g(

α2

b2 ,
⇀
ρ +

⇀

ρ′) − 1
4m1m2b2 [6α2 + α2

b2 (α1 − β1

α1
− 2α2β2)(

⇀
ρ −

⇀

ρ′)2

−α2
⇀
σ 2 · ⇀

σ 5 +
α2

2

2b2 i(1 + γ)(
⇀
ρ ×

⇀

ρ′) · [(2 + m2

m1
)

⇀
σ 2 +(2 + m1

m2
)

⇀
σ 5]

− α2
2

4b2 (1 − γ2)(
⇀
ρ +

⇀

ρ′)· ⇀
σ 2 (

⇀
ρ +

⇀

ρ′)· ⇀
σ 5]g(

α2

b2 ,
⇀
ρ +

⇀

ρ′)}

(B.20)

where

f t
25(

⇀
ρ ,

⇀

ρ′)D = e−
3β2−β2

1
4b2

(
⇀
ρ−

⇀

ρ′)2− 3α2
8b2

(
⇀
ρ +

⇀

ρ′)2 (B.21)

The remaining two terms in (B.3) are of the same form as given above except for the subscripts 25 being replaced by
15 and 35.

Let us turn to the KN interaction potential. For the KN interaction, there is only a direct part of the potential
coming from the t-channel OGEP as represented in (B.3), (B.18) and (B.20) because there are no identical particles
between the N -cluster (qqq) and the K-cluster (qs). In addition, the nonlocal effective potential derived from the
s-channel OGEP plays an essential role in the KN interaction. This potential can be written as

V s(
⇀
ρ ,

⇀

ρ′) = V s d
14 (

⇀
ρ ,

⇀

ρ′) + V s d
24 (

⇀
ρ ,

⇀

ρ′) + V s d
34 (

⇀
ρ ,

⇀

ρ′) (B.22)

here V s d
14 (

⇀
ρ ,

⇀

ρ′) denotes the direct term of the potential generated from the interaction of the quark 1 and the
antiquark 4

V s d
14 (

⇀
ρ ,

⇀

ρ′) =
4παsF a

14Ca
14

(2πb2)3/2 fs
14(

⇀
ρ ,

⇀

ρ′){(3+
⇀
σ 1 · ⇀

σ 4) − 1
4m2

1b2
[3 − (β2−β1)

2

4b2 (
⇀
ρ −

⇀

ρ′)2]

− 1
m2

1b2
(2+

⇀
σ 1 · ⇀

σ 4)(3 −
⇀
ρ

2

+
⇀

ρ′

2

4b2 ) − iβ2−β1

8m2
1b2

(
⇀
ρ ×

⇀

ρ′) · (⇀
σ 1 − ⇀

σ 4)

+
⇀
σ 1·

⇀
σ 4

m2
1b2

− 1
4m2

1b2
[
⇀
ρ · ⇀

σ 1

⇀
ρ · ⇀

σ 4 +
⇀

ρ′ · ⇀
σ 1

⇀

ρ′ · ⇀
σ 4]}

(B.23)

where

fs
14(

⇀
ρ ,

⇀

ρ′)D = e
3β2−1/2

2b2
1

⇀
ρ ·

⇀

ρ′− 3β2+1/2

4b2
1

(
⇀
ρ

2

+
⇀

ρ′

2

)
(B.24)

The other two terms V s d
24 (

⇀
ρ ,

⇀

ρ′) and V s d
34 (

⇀
ρ ,

⇀

ρ′) can be written out from the above expression by the substitution of
the subscripts 24 and 34 for 14.

The effective KN (KN) potential derived from the interquark harmonic oscillator confining potential and quark
interchanges are of simple expressions. They are represented as

V ex
c (

⇀
ρ ,

⇀

ρ′) = −12b21ω
2{C24

s µ24 + C34
s µ34 + C12

s µ12 + C13
s µ13 + C14

s µ14

+ 1
2α2

[C25
s µ25 + C35

s µ35 + C15
s µ15 + C45

s µ45]}e
−

⇀
ρ ·

⇀

ρ′

2b2
−

3β2
4b2

(
⇀
ρ −

⇀

ρ′)2
(B.25)

where the µij denotes the reduced mass of interacting quarks i and j and the color factors are the same as the ones
appearing in the t-channel potentials.

Apart from the potentials listed above, there are additional terms in the KN and KN potentials occurring in the
resonating group equation which arise from the kinetic term and the normalization term in the equation due to the
effect of quark rearrangement. They are written as follows

T ex(
⇀
ρ ,

⇀

ρ′) = (−3)α3/2{ 1
2µ [ γ1

2b2 − (γ1

⇀
ρ−γ1

⇀

ρ′+
⇀

ρ′)2

4b4 ] + 1
2µ1

[ 3
4b2 −

⇀

ρ′

2

16b4 ]

+ 1
2µ2

[ 1
4b2 −

⇀

ρ′

2

144b4 ] + 1
2µ3

[ 3α2

2 b2 − α2
2

⇀

ρ′

2

4b4 ]}fex
T (

⇀
ρ ,

⇀

ρ′)

(B.26)
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where

fex
T (

⇀
ρ ,

⇀

ρ′) = e−
⇀
ρ ·

⇀

ρ′

2b2
− γ1

4b2
(
⇀
ρ−

⇀

ρ′)2 (B.27)

µ =
3m1(m1 +m2)

4m1 +m2
, µ1 =

m1

2
, µ2 =

2m1

3
, µ3 =

m1m2

m1 +m2
, γ1 = 3/(1/3 + α1). (B.28)

and

Nex(
⇀
ρ ,

⇀

ρ′) = −3Ere
−

⇀
ρ ·

⇀

ρ′

2b2
−

(β2
1
+β2

2
)

2b2
(
⇀
ρ−

⇀

ρ′)2 (B.29)

here Er is the relative energy of two clusters.
The color-spin-isospin matrix elements of the above potentials are easily evaluated by using the CFS wave functions

given in Appendix A.

VIII. APPENDIX C: DERIVATION OF PHASE SHIFT FORMULA

In this appendix, we briefly describe the derivation of the formula used to compute the phase shifts with a comment
on the Born approximation. One of the authors of this paper, in his previous work on the relativistic Pauli-Schrödinger
equation for two-body scattering states, which was proved to be equivalent to the corresponding Bethe Salpeter
equation [38], proved that in the relativistic case, the outgoing state wave function of the system under consideration
may be written, in the position space, as

ψ(
⇀
r ) = ϕ0(

⇀
r ) + f(Ωk)

eikr

r
(C.1)

where ϕ0(
⇀
r ) is the wave function for free particles and f(Ωk) the probability amplitude of the outgoing spherical

wave . For a boson system, the wave function in (C.1) is scalar, while, for a fermion system, the wave function is
represented in the Pauli spinor space. In the unequal mass case, the amplitude f(Ωk) is related to the transition
amplitude Tfi in such a fashion

f(Ωk) = −M(E)

2π
Tfi (C.2)

where

M(E) =
E4 − (m2

K −m2
N )2

4E3
(C.3)

with E, mK and mN being the total energy of the system, the kaon mass and nucleon mass and Tfi is the exact
transition amplitude. The amplitude is defined by

Tfi = 〈ϕ0
f | V | ψi〉 (C.4)

where ϕ0
f is the plane wave function of final state, V stands for the interaction Hamiltonian operator and ψi is the

exact initial wave function which is determined by the following equation

ψi = ϕ0
i +G0V ψi (C.5)

in which ϕ0
i is the plane wave function of initial state and

G0 =
1

E −H0 + iε
, ε→ 0+ (C.6)

is the Green’s function with H0 being the free Hamiltonian. The solution of equation (C.5) can formally be represented
as

ψi =
1

1 −G0V
ϕ0

i =

∞
∑

n=0

[G0V ]nϕ0
i (C.7)
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In the lowest order Born approximation, ψi = ϕ0
i and, correspondingly, the transition amplitude in (C.4) takes the

form as given in Eq.(24).
Now we proceed to derive the formula written in Eq.(26). Let us expand the wave functions in (C.1) in partial

waves

ψi =
∑

l

ψlPl(cos θ) (C.8)

f(θ) =
∑

l

flPl(cos θ) (C.9)

and

ϕ0
i = ei

⇀

k ·
⇀
r =

∑

l

(2l + 1)iljl(kr)Pl(cos θ) (C.10)

where Pl(cos θ) is the Legendre function of rank l. With these expansions, noticing the asymptotic behaviors of the
spherical Bessel function jl(kr) and the function ψl(r)

jl(k)
−→
r→∞

1

kr
sin(kr − lπ

2
) (C.11)

ψl(r)
−→
r→∞

Cl

r
sin(kr − lπ

2
+ δl) (C.12)

One may find a result from (C.1) such that

fl =
(2l+ 1)

2ik
(e2iδl − 1) (C.13)

On the other hand, the transition amplitude may also be expanded in partial waves

Tfi = 4π
∑

l

(2l + 1)TlPl(cos θ) (C.14)

where

Tl =
1

8π

∫ 1

−1

dxPl(x)Tfi (C.15)

Combining (C.2), (C.9), (C.13) and (C.14), it is easy to derive the following relation

e2iδl = 1 − 4iM(E)kTl (C.16)

When (C.7) is substituted into (C.4), we can write

Tfi =

∞
∑

n=0

T n
fi (C.17)

where

T n
fi = 〈ϕ0

f | (V G0)nV | φ0
i 〉 (C.18)

On inserting (C.17) into (C.15), we have

Tl =

∞
∑

n=0

T n
l (C.19)

where
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T n
l =

1

8π

∫ 1

−1

dxPl(x)T
n
fi (C.20)

Upon substituting (C.19) and the Taylor expansion of e2iδl into (C.16), one may find

∞
∑

n=1

1

n!
(2iδ)n = −i4M(E)k

∞
∑

n=0

T n
l (C.21)

From the above equality, it is clearly seen that there exists an one-to-one correspondence between the terms of the
same order in the both series. When only the first term in each series is considered, we obtain

δl = −2MkTl(k) (C.22)

which is proportional to the interaction Hamiltonian V . This just is the formula for the phase shift which is given in
the so-called Born approximation. If the phase shift is really proportional to the interaction Hamiltonian V as in the
Born approximation, from the corresponding higher order terms of the both series in (C.21), we can write

(δl)
n+1 ≈ − (n+ 1)!Mk

22−1in
T n

l (C.23)

which is proportional to V n+1 and means that the n-th terms in the both series in (C.21) are approximately equal to
each other as if (C.23) is approximately given by taking the equality in (C.22) to the (n+1)-th power. If the relation
in (C.23) holds, we see, the formula in (C.22) appears to be a good approximation.

IX. APPENDIX D: NOTES ON QCD RENORMALIZATION

To help understanding of the renormalization formulas written in Sect.3, in this appendix, we give some explanations
of the QCD renormalization. It is well-known that the t-channel OGEP in Eq.(4) and the s-channel OGEP in Eq.(6) are
usually derived from the lowest-order S-matrix elements given by the tree Feynman diagrams representing respectively
the quark-quark(or quark-antiquark) scattering and quark-antiquark annihilation processes in the nonrelativistic
approximation of the order p2/m2. As an example, we write the lowest order S-matrix element for two-quark scattering
as follows

S
(0)
fi = u(0)(p1)igγ

µT au(0)(q1)iD
(0)ab
µν (k)u(0)(p2)igγ

νT bu(0)(q2) (D.1)

where u(0)(p) is the free quark wave function, u(0)(p1) is its Dirac conjugate (here the spin indices of the spinor

functions are suppressed for simplicity), iD
(0)ab
µν (k) is the gluon free propagator with k = p1− q1 = q2−p2 and igγµT a

is the bare vertex with g being the coupling constant and T a the color matrix. Correspondingly, the exact S-matrix
element given by the one-gluon exchange interaction is represented as

Sfi = u(p1)Γ
aµ(p1, q1)u(q1)iD

ab
µν(k)u(p2)Γ

aν(p2, q2)u(q2) (D.2)

where u(p), iDab
µν(k) and Γaµ(p, q) denote the full (or say, dressed) quark wave function, gluon propagator and quark-

gluon vertex respectively in which all higher order perturbative corrections are included. According to the well-known
renormalization relations

u(p) =
√
Z2uR(p), u(p) =

√
Z2uR(p),

Dab
µν(k) = Z3D

ab
Rµν(k),Γaµ(p, q) = ZΓΓaµ

R (p, q)
(D.3)

where the subscript R marks the renormalized quantities,
√
Z2, Z3 and ZΓ = Z−1

2 Z
− 1

2
3 are the renormalization

constants for the quark wave function, the gluon propagator and the quark-gluon vertex respectively, one can get
from (D.2) that

Sfi = uR(p1)Γ
aµ
R (p1, q1)uR(q1)iD

ab
Rµν(k)uR(p2)Γ

aν
R (p2, q2)uR(q2) (D.4)

As shown in Ref (27), the renormalized quantities in the above can be determined by their renormalization group
equations and their renormalization boundary conditions. The results given by solving the renormalization group
equations are
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uR(p) = e
1
2

∫

λ

1

dλ
λ γ2(λ)

u
(0)
R (p)

uR(p) = e
1
2

∫ λ

1

dλ
λ γ2(λ)

u
(0)
R (p)

Dab
Rµν(k) = e

∫

dλ
λ γ3(λ)iD

(0)ab
Rµν (k)

Γaµ
R (p, q) = e

∫

dλ
λ γΓ(λ)igR(λ)γµT a

(D.5)

where u
(0)
R (p) and u

(0)
R (p) are of the same forms as the free wave functions except that the quark mass in them becomes

the effective (running) one, iD
(0)ab
Rµν (k) formally is the same as the free propagator but the gauge parameter in it is

replaced by the effective one, gR(λ) in the bare vertex igR(λ)γµT a is the effective coupling constant, 1
2γ2(λ), γ3(λ)

and γΓ(λ) are the anomalous dimensions defined by

1
2γ2(λ) = λ d

dλ ln
√

Z2(λ), γ3(λ) = λ d
dλ lnZ3(λ),

γΓ(λ) = λ d
dλ lnZΓ(λ) = −γ2(λ) − 1

2γ3(λ)
(D.6)

On inserting (D.5) into (D.4), we see that the anomalous dimensions are all cancelled out with each other. As a result,
we have

Sfi = u
(0)
R (p1)igR(λ)γµT au

(0)
R (q1)iD

(0)ab
Rµν (k)u

(0)
R (p2)igR(λ)γνT bu

(0)
R (q2) (D.7)

This S-matrix element is completely the same as the one shown in (D.1) except that the quark mass, the gauge
parameter and the coupling constant are replaced by the running ones. In the nonrelativistic approximation of order
p2/m2, one may derive a OGEP from (D.7) which in the Feynman gauge is just as that written in Eq.(4) with
the coupling constant and quark mass being the effective ones. These effective quantities precisely represent the
renornalization effect and at one-loop level, they are of the forms as given in Sect.3. For the s-channel OGEP, the
discussion is completely the same.

Next, we would like to address the renormalization point. In the ordinary QCD renormalization performed in the
minimal subtraction scheme, which is suitable in the large momentum limit because only in this limit the quark mass
can be set to be zero, the renormalization point is chosen to be space-like. This choice is suitable to the scattering
process because in this case the transfer momentum, i.e. the variable of the gluon propagator in (D.2) is space-like.
This can be seen from the following derivation,

k2 = (p1 − q1)
2 = 2m2 − 2

√

−→p1
2 +m2

√

−→q12 +m2 + 2 |−→p1| |−→q1 | cos θ (D.8)

in the high energy limit, we can set m ≈ 0, therefore

k2 ≈ −2 |−→p1| |−→q1 | (1 − cos θ) ≤ 0 (D.9)

In the low energy domain, since

√

−→p 2 +m2 ≈ m+
−→p 2

2m2
(D.10)

(D.8) can be approximated as

k2 ≈ −(−→p1 −−→q1)2 ≤ 0 (D.11)

So, for the t-channel OGEP, it is suitable to use the effective coupling constant and quark mass given by the subtraction
performed at space-like renormalization point . While, for the annihilation process, the momentum in the gluon
propagator is time-like because in this case k = p1 + p2 = q1 + q2,

k2 = (p1 + p2)
2 = 2m2 + +2

√

−→p1
2 +m2

√

−→p2
2 +m2 − 2 |−→p1| |−→p2| cos θ (D.12)

In the large momentum limit, we can write

k2 ≈ 2 |−→p1| |−→p2| (1 − cos θ) ≥ 0 (D.13)

in the low energy regime, we have

k2 ≈ (−→p1 −−→p2)
2 ≥ 0 (D.14)

Therefore, for the s-channel OGEP, it is appropriate to use the effective quantities given by the subtraction carried
out at time-like renormalization point.
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[1] A. De Rújula, H. Georgi and S. L. Glashow, Phys. Rev. D12, 147 (1975).
[2] N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978); D19, 2653 (1979).
[3] W. Lucha, F. F. Schoberl and D. Gromes, Phys. Rep. 200, 127 (1991), many references therein
[4] J. J. Griffin and J. A. Wheeler, Nucl. Phys. 108, 331 (1957).
[5] M. Harvey, Nucl. Phys. A352, 326 (1981).
[6] M. Oka and K. Yazaki, Prog. Theor. Phys. 66, 556 (1981).
[7] A. Faessler, E. Fernandez, G. Lubeck and K. Shimizu, Nucl. Phys. A402, 555 (1983).
[8] I. Bender and H. G. Dosch, Z. Phys. C13, 69 (1982).
[9] H. J. Pirner and B. Povh, Phys. Lett. B114, 308 (1982).

[10] I. Bender, H. G. Dosch, H. J. Priner and H. G. Kruse, Nucl. Phys. A414, 359 (1984).
[11] D. Mukhopadhyay and H. J. Pirner, Nucl. Phys. A442, 605 (1985).
[12] J. Weinstein and N. Isgur, Phys. Rev. D27, 588 (1983); D41, 2236 (1990); D43, 95 (1991).
[13] R. Müller, T. Schmeidl and H. M. Hofmann, Z. Phys. A334, 451 (1989).
[14] T. Barnes, E. S. Swanson and J. Weinstein, Phys. Rev. D46, 4868 (1992).
[15] T. Barnes and E. S. Swanson, Phys. Rev. D46, 131 (1992); Phys. Rev. C49, 1166 (1994).
[16] T. Barnes, N. Black and E. S. Swanson, Phys.Rev. C63, 025204 (2001).
[17] N. Black, J. Phys. G: Nucl. Part. Phys. 28, 1953 (2002).
[18] S. Lemaire, J. Labarsouque and B. Slivestre-Brac, Nucl. Phys. A696, 497 (2001).
[19] G. Q. Zhao, X. G. Jing, and J. C. Su, Phys. Rev. D58, 117503 (1998).
[20] J. X. Chen, Y. H. Cao and J. C. Su, Phys. Rev. C64, 065201 (2001).
[21] J .C. Su, Y. B .Dong and S. S. Wu, J. Phys. G: Nucl. Part. Phys. 18, 1347 (1992).
[22] J. C. Su and S. S. Wu, Chinese Phys. 8, 978 (1989); J. C. Su, Z. Q. Chen and S. S. Wu, Nucl. Phys. A254, 615 (1991).
[23] J. C. Su, L. Y. Shan, Y. H. Cao, Commun. Theor. Phys. 36, 665 (2001).
[24] E. Braaten and Y. Q. Chen, Phys. Rev. Lett. 76, 730 (1996).
[25] Feng Yuan, Cong-Feng Qiao and Kuang-Ta Chao, Phys.Rev. D56, 321 (1997).
[26] Y. B. Dong, J. C. Su and S. S. Wu, J. Phys. G: Nucl. Part. Phys. 18, 75 (1992).
[27] J. C. Su, X. X. Yi and Y. H. Cao, J. Phys. G: Nucl. Part. Phys. 25, 2325 (1999).
[28] G. t’Hooft, Nucl. Phys. B61, 455 (1973); W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D18, 3998

(1978).
[29] J. S. Hyslop, R. A. Arndt, L. D. Roper and R. L. Workman, D46, 961 (1992).
[30] K. Hashimoto, Phys. Rev. C29, 1377 (1984).
[31] J. D. Davies, G. J. Pyle, G. T. A. Squier, C. J. Batty, S. F. Biagi, S. D. Hoath, P. Sharman and A. S. Clough, Phys. Lett.

83B, 55 (1979).
[32] M. Izycki, G. Backenstoss, L. Tauscher, P. Blum, R. Guigas, N. Hassler, H. Koch, H. Poth, K. Fransson, A.Nilsson, P.

Pavlopoulos and K. Zioutas, Z. Phys. A297, 11 (1980).
[33] P. M. Bird, A. S. Clough and K. R. Parker, Nucl. Phys. A404, 482 (1983).
[34] M. Iwasaki, et al., Phys. Rev. Lett. 78, 3067 (1997).
[35] A. D. Martin, Nucl. Phys. B179, 33 (1981).
[36] B. R. Martin and M. Sakit, Phys. Rev. 183, 1352 (1969).
[37] T. Waas, N. Kaiser and W. Weise, Phys. Lett. B365, 12 (1996).
[38] J. C. Su, Commun. Theor. Phys. 18, 327 (1992).

XI. FIGURE CAPTIONS

Fig.1: The theoreticalKN S-wave phase shifts in the I = 0 and 1 channels. The solid lines represent the phase shifts
with considering the effects of the color octet, the QCD renormalization and the spin-orbit suppression. The dotted
lines denotes the result without considering the color octet and the dashed line shows the result without considering
the QCD renormalization. The experimental phase shifts [29, 30] are shown by black squares with error bars.

Fig.2: The theoreticalKN P-wave phase shifts in the I = 0 and 1 channels. The solid lines represent the phase shifts
with considering the effects of the color octet, the QCD renormalization and the spin-orbit suppression. The dotted
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and dashed lines denote the results without considering the color octet and the QCD renormalization respectively.
The experimental phase shifts [29, 30] are shown by black squares with error bars.

Fig.3: The theoreticalKN D-wave phase shifts in the I = 0 and 1 channels. The solid lines represent the phase shifts
with considering the effects of the color octet, the QCD renormalization and the spin-orbit suppression. The dotted
and dashed lines denote the results without considering the color octet and the QCD renormalization respectively.
The experimental phase shifts [29, 30] are shown by black squares with error bars.

Fig.4: The theoretical predictions for the KN S, P and D-wave phase shifts.
Fig.5: The approximate expressions of the integral f(x) in Eq.(32) given by different values of the parameter γ

which are plotted with the dotted lines. The real values of the integral is represented by the solid line.
Fig.6: Illustration of the effect of the spin-orbit suppression on the P-wave phase shifts. The solid lines represent

the final results given by taking the parameter γ = 0.45. The dotted lines denote the results given by γ = 0.30.
Fig.7: The QCD effective coupling constants obtained from the one-loop renormalization. The solid, dashed and

dotted lines represent the results given by the time-like momentum subtraction, the space-like momentum subtraction
and the minimal subtraction respectively.

Fig.8: The QCD effective quark masses obtained from the one-loop renormalization. The solid line represents the
result given by the time-like momentum subtraction. The dashed line shows the real part of the effective quark mass
given in the space-like momentum subtraction.
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